How do you solve this integral?

inttan^2xdxtan2xdx

1 Answer
Jan 16, 2017

int tan^2x dx = tanx -x +Ctan2xdx=tanxx+C

Explanation:

Use the identity:

tan^2x = sec^2x -1tan2x=sec2x1

and remember that:

d/(dx) tanx = sec^2xddxtanx=sec2x

so we have:

int tan^2x dx = int (sec^2x -1) dx = int sec^2xdx - int dx = tanx -x +Ctan2xdx=(sec2x1)dx=sec2xdxdx=tanxx+C