How do you find the integral of cos^(2)2xdx?

1 Answer
Jul 18, 2016

int cos^2(2x) dx = 1/2int cos(4x)dx + 1/2x + C

Explanation:

Using the fact

cos(a+b)=cos(a) cos(b)-sin( a) sin(b) we know that
cos(2a) = 2cos^2(a)-1 then
cos^2(a)=(cos(2a)+1)/2

so

cos^2(2x) =(cos(4x)+1)/2 and finally

int cos^2(2x) dx = 1/2int cos(4x)dx + 1/2x + C