How do you find the integral of cos^(2)2xdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cesareo R. Jul 18, 2016 int cos^2(2x) dx = 1/2int cos(4x)dx + 1/2x + C Explanation: Using the fact cos(a+b)=cos(a) cos(b)-sin( a) sin(b) we know that cos(2a) = 2cos^2(a)-1 then cos^2(a)=(cos(2a)+1)/2 so cos^2(2x) =(cos(4x)+1)/2 and finally int cos^2(2x) dx = 1/2int cos(4x)dx + 1/2x + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1398 views around the world You can reuse this answer Creative Commons License