How do you integrate (tanx)^2? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Aug 21, 2016 tanx-x+C. Explanation: We will use the Trigo. Identity : sec^2x=tan^2x+1. Hence, int(tanx)^2 dx=int tan^2xdx=int (sec^2x-1)dx =int sec^2xdx-int 1 dx=tanx-x+C. Enjoy Maths.! Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 67476 views around the world You can reuse this answer Creative Commons License