What is the integral of int cosx/sqrt(1-2sinx)?

1 Answer
Mar 31, 2018

-sqrt(1-2sin(x))+c

Explanation:

Start by substituting u=1-2sin(x) and du=-2cos(x)dx
int cosx/sqrt(1-2sinx)dx=int(-1/2)/sqrt(u)du=-1/2int1/sqrt(u)du
int1/sqrt(u)du=intu^(-1/2)du=2u^(1/2)+c

All in all:
-1/2*2u^(1/2)+c=-sqrt(u)+c

Substitute back

-sqrt(u)+c=-sqrt(1-2sin(x))+c