How do you find the integral of #int 1/(1 + cos(x))#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Dharma R. · John D. Sep 18, 2015 #-cotx+cscx+"C"# Explanation: #int1/(1+cosx)dx = int(1-cosx)/((1+cosx)(1-cosx))dx # #= int(1-cosx)/(1-cos^2x)dx # #= int(1-cosx)/sin^2xdx # #= int 1/sin^2xdx-intcosx/sin^2xdx# =#int csc^2xdx-intcotxcscxdx# =#-cotx+cscx+"C"# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 109704 views around the world You can reuse this answer Creative Commons License