We have:
#int tan^2(x)/(sec(x))dx#
We can rewrite this as:
#int tan^(2)(x)*(sec(x))^-1dx# Remember that:
#tan^2(x)=sec^2(x)-1#
#=>int (sec^2(x)-1)*(sec(x))^-1dx#
#=>int sec(x)-(sec(x))^-1dx#
#=>int sec(x)dx-int(sec(x))^-1dx#
Here, remember that #intsec(x)dx=lnabs(sec(x)+tan(x))+C#
#=>lnabs(sec(x)+tan(x))-int(sec(x))^-1dx# (You can ignore the #C#.)
Now...
What does #sec^-1(x)# equal to?
First, #(cos(x))^-1=sec(x)#
Therefore, #sec^-1(x)=((cos(x))^-1)^-1=>cos(x)#
Therefore, we now have:
#=>lnabs(sec(x)+tan(x))-intcos(x)dx#
Another thing to remember is that #intcos(x)dx=sin(x)#
Therefore, we now have:
#=>lnabs(sec(x)+tan(x))-sin(x)# Do you #C# why this is incomplete?
#int tan^2(x)/(sec(x))dx=lnabs(sec(x)+tan(x))-sin(x)+C#