What is the Integral of tan^2(x)/sec(x) ?

2 Answers
Apr 3, 2018

The answer is =ln(|tanx+secx|)-sinx+C

Explanation:

"Reminder"

intsecxdx=ln(tanx+secx)+C

Therefore, the integral is

int(tan^2xdx)/(secx)= intcosxtan^2xdx

=intcosx(sec^2x-1)dx

=int(secx-cosx)dx

=ln(|tanx+secx|)-sinx+C

Apr 3, 2018

int tan^2(x)/(sec(x))dx=lnabs(sec(x)+tan(x))-sin(x)+C

Explanation:

We have:

int tan^2(x)/(sec(x))dx

We can rewrite this as:

int tan^(2)(x)*(sec(x))^-1dx Remember that:

tan^2(x)=sec^2(x)-1

=>int (sec^2(x)-1)*(sec(x))^-1dx

=>int sec(x)-(sec(x))^-1dx

=>int sec(x)dx-int(sec(x))^-1dx

Here, remember that intsec(x)dx=lnabs(sec(x)+tan(x))+C

=>lnabs(sec(x)+tan(x))-int(sec(x))^-1dx (You can ignore the C.)

Now...

What does sec^-1(x) equal to?

First, (cos(x))^-1=sec(x)

Therefore, sec^-1(x)=((cos(x))^-1)^-1=>cos(x)

Therefore, we now have:

=>lnabs(sec(x)+tan(x))-intcos(x)dx

Another thing to remember is that intcos(x)dx=sin(x)

Therefore, we now have:

=>lnabs(sec(x)+tan(x))-sin(x) Do you C why this is incomplete?

int tan^2(x)/(sec(x))dx=lnabs(sec(x)+tan(x))-sin(x)+C