We have:
int tan^2(x)/(sec(x))dx
We can rewrite this as:
int tan^(2)(x)*(sec(x))^-1dx Remember that:
tan^2(x)=sec^2(x)-1
=>int (sec^2(x)-1)*(sec(x))^-1dx
=>int sec(x)-(sec(x))^-1dx
=>int sec(x)dx-int(sec(x))^-1dx
Here, remember that intsec(x)dx=lnabs(sec(x)+tan(x))+C
=>lnabs(sec(x)+tan(x))-int(sec(x))^-1dx (You can ignore the C.)
Now...
What does sec^-1(x) equal to?
First, (cos(x))^-1=sec(x)
Therefore, sec^-1(x)=((cos(x))^-1)^-1=>cos(x)
Therefore, we now have:
=>lnabs(sec(x)+tan(x))-intcos(x)dx
Another thing to remember is that intcos(x)dx=sin(x)
Therefore, we now have:
=>lnabs(sec(x)+tan(x))-sin(x) Do you C why this is incomplete?
int tan^2(x)/(sec(x))dx=lnabs(sec(x)+tan(x))-sin(x)+C