Question #34cc6

1 Answer
Feb 13, 2017

The answer is =1/2(e^xsinx-e^xcosx)+C

Explanation:

We integrate by parts 2 times

intu'vdx=uv-intuv'dx

For the first time

v=sinx, =>, v'=cosx

u'=e^x, =>, u=e^x

So,

inte^xsinxdx=e^xsinx-inte^xcosxdx

For the second time,

v=cosx, =>, v'=-sinx

u'=e^x, =>, u=e^x

inte^xcosxdx=e^xcosx+inte^2sinxdx

Therefore,

inte^xsinxdx=e^xsinx-(e^xcosx+inte^2sinxdx)

inte^xsinxdx=e^xsinx-e^xcosx-inte^2sinxdx

2inte^xsinxdx=e^xsinx-e^xcosx

inte^xsinxdx=1/2(e^xsinx-e^xcosx)+C