What's the integral of int (secx + tanx)dx ?

1 Answer
May 20, 2018

The answer is =ln(|tanx+secx|)-ln(|cosx|)+C

Explanation:

We need

intsecxdx=int((secx(tanx+secx)dx)/(tanx+secx))

=int((secxtanx+sec^2x)dx)/(tanx+secx)

Let u=tanx+secx, =>, du=(sec^2x+secxtanx)dx

intsecxdx=int(du)/u=ln(u)

=ln(|tanx+secx|)+C

inttanxdx=int(sinxdx)/cosx

Let u=cosx, =>, du=-sinxdx

inttanxdx=-int(du)/u=-ln(u)

=-ln(|cosx|)+C

Therefore, the integral is

I=int(secx+tanx)dx

=intsecxdx+inttanxdx

=ln(|tanx+secx|)-ln(|cosx|)+C