How do you integrate tan(x)3?

1 Answer
Jan 11, 2017

tan3xdx=12cos2x+ln|cosx|+C

Explanation:

You can write tan3x as:

tan3x=sin3xcos3x=sinx1cos2xcos3x

So that:

tan3xdx=sinx1cos2xcos3xdx

Now substitute:

t=cosx
dt=sintdt

and you have:

tan3xdx=1t2t3dt

Separating the sum:

tan3xdx=1t3dt+dtt=12t2+ln|t|

and substituting back t=cosx

tan3xdx=12cos2x+ln|cosx|+C