How do you find the integral of (sin2(6x))(cos2(6x))dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Konstantinos Michailidis Jun 4, 2016 You can rewrite this as follows ∫(sin2(6x))(cos2(6x))dx=∫(12⋅2⋅sin(6x)⋅cos(6x))2dx=∫14(sin12x)2dx Remember that cos2x=cos2x−sin2x=1−2sin2x⇒sin2x=12⋅(1−cos2x) Hence 14∫(sin212x)dx=∫18(1−cos24x)dx=x8−1192⋅sin(24x)+c Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 5786 views around the world You can reuse this answer Creative Commons License