How do you integrate int cos^3x dx?

3 Answers
Aug 4, 2016

I found: sin(x)-(sin^3(x))/3+c

Explanation:

Have a look:
enter image source here

Aug 4, 2016

sin(x)cos(x)^2+2/3sin(x)^3+C

Explanation:

d/(dx)(sin(x)cos(x)^2)=cos(x)^3-2sin(x)^2cos(x)

then

int cos(x)^3dx = sin(x)cos(x)^2+2intsin(x)^2cos(x)dx

but

intsin(x)^2cos(x)dx = int(1/3 d/(dx)sin(x)^3)dx

finally

int cos(x)^3dx = sin(x)cos(x)^2+2/3sin(x)^3+C

Aug 4, 2016

int cos^3 x d x=sin x-1/3sin^3 x+C

Explanation:

"a different way..."

"use reduction formula"

int cos^n x d x=(n-1)/n int cos^(n-2) x d x+(cos^(n-1)x*sin x)/n

"use n=3"

int cos^3 x d x=(3-1)/3 int cos^(3-2)x +(cos^(3-1)x*sin x)/(3)

int cos^3 x d x=2/3int cos x d x+(cos^2 x*sin x)/3

cos^2x=1-sin^2x

int cos^3 x d x=2/3 sin x+((1-sin^2 x)*sin x)/3

int cos^3 x d x=2/3 sin x+(sin x-sin^3 x)/3

int cos^3 x d x=(2 sin x+sin x-sin^3 x)/3

int cos^3 x d x=(3sin x-sin^3 x)/3

int cos^3 x d x=sin x-1/3sin^3 x+C