What is the antiderivative of (e^x)sinx(ex)sinx?

1 Answer
Apr 19, 2016

inte^xsin(x)dx=(e^x(sin(x)-cos(x)))/2+Cexsin(x)dx=ex(sin(x)cos(x))2+C

Explanation:

Use integration by parts:

intudv=uv-intvduudv=uvvdu

So, for

intcolor(red)(e^x)color(blue)(sin(x))color(red)dxexsin(x)dx

We should let:

color(blue)(u=sin(x))" "=>" "du=cos(x)dxu=sin(x) du=cos(x)dx

color(red)(dv=e^xdx)" "=>" "intdv=inte^xdx" "=>" "v=e^xdv=exdx dv=exdx v=ex

Plugging these into the integration by parts formula, we see that

inte^xsin(x)dx=e^xsin(x)-intcolor(green)(e^x)color(purple)(cos(x))color(green)dxexsin(x)dx=exsin(x)excos(x)dx

Use integration by parts for the second time:

color(purple)(u=cos(x))" "=>" "du=-sin(x)dxu=cos(x) du=sin(x)dx

color(green)(dv=e^xdx)" "=>" "intdv=inte^xdx" "=>" "v=e^xdv=exdx dv=exdx v=ex

Thus, we obtain

inte^xsin(x)dx=e^xsin(x)-[e^xcos(x)-inte^x(-sin(x))dx]exsin(x)dx=exsin(x)[excos(x)ex(sin(x))dx]

inte^xsin(x)dx=e^x(sin(x)-cos(x))-inte^xsin(x)dxexsin(x)dx=ex(sin(x)cos(x))exsin(x)dx

Add the integral to both sides and solve for it:

2inte^xsin(x)dx=e^x(sin(x)-cos(x))2exsin(x)dx=ex(sin(x)cos(x))

inte^xsin(x)dx=(e^x(sin(x)-cos(x)))/2+Cexsin(x)dx=ex(sin(x)cos(x))2+C