What is the antiderivative of #(e^x)sinx#?
1 Answer
Explanation:
Use integration by parts:
#intudv=uv-intvdu#
So, for
#intcolor(red)(e^x)color(blue)(sin(x))color(red)dx#
We should let:
#color(blue)(u=sin(x))" "=>" "du=cos(x)dx#
#color(red)(dv=e^xdx)" "=>" "intdv=inte^xdx" "=>" "v=e^x#
Plugging these into the integration by parts formula, we see that
#inte^xsin(x)dx=e^xsin(x)-intcolor(green)(e^x)color(purple)(cos(x))color(green)dx#
Use integration by parts for the second time:
#color(purple)(u=cos(x))" "=>" "du=-sin(x)dx#
#color(green)(dv=e^xdx)" "=>" "intdv=inte^xdx" "=>" "v=e^x#
Thus, we obtain
#inte^xsin(x)dx=e^xsin(x)-[e^xcos(x)-inte^x(-sin(x))dx]#
#inte^xsin(x)dx=e^x(sin(x)-cos(x))-inte^xsin(x)dx#
Add the integral to both sides and solve for it:
#2inte^xsin(x)dx=e^x(sin(x)-cos(x))#
#inte^xsin(x)dx=(e^x(sin(x)-cos(x)))/2+C#