What is the antiderivative of #(e^x)sinx#?

1 Answer
Apr 19, 2016

#inte^xsin(x)dx=(e^x(sin(x)-cos(x)))/2+C#

Explanation:

Use integration by parts:

#intudv=uv-intvdu#

So, for

#intcolor(red)(e^x)color(blue)(sin(x))color(red)dx#

We should let:

#color(blue)(u=sin(x))" "=>" "du=cos(x)dx#

#color(red)(dv=e^xdx)" "=>" "intdv=inte^xdx" "=>" "v=e^x#

Plugging these into the integration by parts formula, we see that

#inte^xsin(x)dx=e^xsin(x)-intcolor(green)(e^x)color(purple)(cos(x))color(green)dx#

Use integration by parts for the second time:

#color(purple)(u=cos(x))" "=>" "du=-sin(x)dx#

#color(green)(dv=e^xdx)" "=>" "intdv=inte^xdx" "=>" "v=e^x#

Thus, we obtain

#inte^xsin(x)dx=e^xsin(x)-[e^xcos(x)-inte^x(-sin(x))dx]#

#inte^xsin(x)dx=e^x(sin(x)-cos(x))-inte^xsin(x)dx#

Add the integral to both sides and solve for it:

#2inte^xsin(x)dx=e^x(sin(x)-cos(x))#

#inte^xsin(x)dx=(e^x(sin(x)-cos(x)))/2+C#