int_(pi/2)^pi 5cscx dx∫ππ25cscxdx
This is an improper integral, and it diverges (to oo∞).
(It does not converge.)
Solution:
The integral is improper because piπ is not in the domain of csccsc, so we need :
lim_(brarrpi^-)int_(pi/2)^b 5cscx dx=5lim_(brarrpi^-)int_(pi/2)^b cscx dx
(It's hard to see, but both limits are brarrpi^-,)
We'll need to find intcscxdx.
intcscxdx=int1/sinx dx=int1/(2sin(x/2)cos(x/2)) dx
=1/2int(sin^2(x/2)+cos^2(x/2))/(sin(x/2)cos(x/2))dx
=1/2int(sin(x/2)/cos(x/2)+cos(x/2)/sin(x/2))dx
=1/2[-2ln(cos(x/2)+2lnsin(x/2)]+C
=lnsin(x/2)-lncos(x/2)+C =lntan(x/2)+C
So the definite integral is:
, int_(pi/2)^b cscx dx=lntan(b/2)-lntan(pi/4)=lntan(b/2)-ln1=lntan(b/2)
Finally, as brarr pi ^-, we see that b/2rarr (pi/2)^- and tan(b/2)rarroo, so as brarr pi ^-, we get lntan(b/2)rarroo
lim_(brarrpi^-)int_(pi/2)^b 5cscx dx=5lim_(brarrpi^-)int_(pi/2)^b cscx dx=5(oo)=oo.
The integral diverges.