What is the integral of cos2xsinx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer ali ergin Mar 29, 2016 ∫cos2sinxdx=ln(tan(x2))+cosx+C Explanation: ∫cos2sinxdx=? cos2x=1−sin2x ∫1−sin2xsinxdx=∫(1sinx−sinx)dx ∫cos2sinxdx=∫dxsinx−∫sinxdx ∫cos2sinxdx=ln(tan(x2))+cosx+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 32167 views around the world You can reuse this answer Creative Commons License