How do you integrate #sqrttanx#?

2 Answers
Sep 22, 2016

#1/sqrt2arc tan{(tanx-1)/(sqrt(2tanx))}#
#+1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|+C#.

Explanation:

Let #I=intsqrttanxdx#.

We subst. #tanx=t^2", so that, "sec^2xdx=2tdt#, or,

#dx=(2tdt)/sec^2x=(2tdt)/(1+tan^2x)=(2tdt)/(1+t^4).# Hence,

#I=int{t*(2t)/(1+t^4)}dt=int(2t^2)/(1+t^4)dt=int2/(t^2+1/t^2)dt#

#=int((1+1/t^2)+(1-1/t^2))/(t^2+1/t^2)dt#

#=int(1+1/t^2)/(t^2+1/t^2)dt+int(1-1/t^2)/(t^2+1/t^2)dt=I_1+I_2, say#,

where, #I_1=int(1+1/t^2)/(t^2+1/t^2)dt.#

Subst. #t-1/t=u rArr (1+1/t^2)dt=du, &, t^2+1/t^2=u^2+2.#

#:. I_1=int1/(u^2+(sqrt2)^2)du=1/sqrt2arc tan(u/sqrt2)#.

For, #I_2=int(1-1/t^2)/(t^2+1/t^2)dt,#

we take, #(t+1/t)=v rArr (1-1/t^2)dt=dv, &, t^2+1/t^2=v^2-2#.

#:. I_2=int1/(v^2-(sqrt2)^2)dv=1/(2sqrt2)*ln|(v-sqrt2)/(v+sqrt2)|#.

Thus, #I_1=1/sqrt2arc tan((t-1/t)/sqrt2)=1/sqrt2arc tan{(t^2-1)/(sqrt2t)}#

#=1/sqrt2arc tan{(tanx-1)/sqrt(2tanx)}#, and,

#I_2=1/(2sqrt2)ln|(t+1/t-sqrt2)/(t+1/t+sqrt2)|#

#=1/(2sqrt2)ln|(t^2-sqrt2t+1)/(t^2+sqrt2t+1)|#

#=1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|#.

Finally, #I=I_1+I_2#

#=1/sqrt2arc tan{(tanx-1)/(sqrt(2tanx))}#
#+1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|+C#.

Enjoy Maths.!

Sep 23, 2016

#I=int sqrttanxdx#

#=1/2int (2sqrttanx)dx#

#=1/2[int (sqrttanx+sqrtcotx)dx+ int(sqrttanx-sqrtcotx)dx]#

Let
#I_1=int (sqrttanx+sqrtcotx)dx#

#=sqrt2int (sinx+cosx)/sqrt(2sinxcosx)dx#

#=sqrt2int (sinx+cosx)/sqrt(1-(sinx-cosx)^2)dx#

If #sinx -cosx =u " then " du =(sinx+cosx)dx#

So

#I_1=sqrt2int1/sqrt(1-u^2) du=sqrt2sin^-1u#
#=sqrt2sin^-1(sinx-cosx)#

Similarly
#I_2=int (sqrttanx-sqrtcotx)dx#

#=sqrt2int (sinx-cosx)/sqrt(2sinxcosx)dx#

#=-sqrt2int (cosx-sinx)/sqrt((sinx+cosx)^2-1)dx#

If #sinx +cosx =v" then " dv =(cosx-sinx)dx#

So

#I_2=-sqrt2int1/sqrt(v^2-1) dv=-sqrt2lnabs(v+sqrt(v^2-1))#
#=-sqrt2(lnabs((sinx+cosx)+sqrt(2sinxcosx)))#

#I=1/2(I_1+I_2)#

#=1/2[sqrt2sin^-1(sinx-cosx)-sqrt2lnabs((sinx+cosx)+sqrt(2sinxcosx))]+C#

#=1/sqrt2[sin^-1(sinx-cosx)-lnabs((sinx+cosx)+sqrt(2sinxcosx))]+C#