Let #I=intsqrttanxdx#.
We subst. #tanx=t^2", so that, "sec^2xdx=2tdt#, or,
#dx=(2tdt)/sec^2x=(2tdt)/(1+tan^2x)=(2tdt)/(1+t^4).# Hence,
#I=int{t*(2t)/(1+t^4)}dt=int(2t^2)/(1+t^4)dt=int2/(t^2+1/t^2)dt#
#=int((1+1/t^2)+(1-1/t^2))/(t^2+1/t^2)dt#
#=int(1+1/t^2)/(t^2+1/t^2)dt+int(1-1/t^2)/(t^2+1/t^2)dt=I_1+I_2, say#,
where, #I_1=int(1+1/t^2)/(t^2+1/t^2)dt.#
Subst. #t-1/t=u rArr (1+1/t^2)dt=du, &, t^2+1/t^2=u^2+2.#
#:. I_1=int1/(u^2+(sqrt2)^2)du=1/sqrt2arc tan(u/sqrt2)#.
For, #I_2=int(1-1/t^2)/(t^2+1/t^2)dt,#
we take, #(t+1/t)=v rArr (1-1/t^2)dt=dv, &, t^2+1/t^2=v^2-2#.
#:. I_2=int1/(v^2-(sqrt2)^2)dv=1/(2sqrt2)*ln|(v-sqrt2)/(v+sqrt2)|#.
Thus, #I_1=1/sqrt2arc tan((t-1/t)/sqrt2)=1/sqrt2arc tan{(t^2-1)/(sqrt2t)}#
#=1/sqrt2arc tan{(tanx-1)/sqrt(2tanx)}#, and,
#I_2=1/(2sqrt2)ln|(t+1/t-sqrt2)/(t+1/t+sqrt2)|#
#=1/(2sqrt2)ln|(t^2-sqrt2t+1)/(t^2+sqrt2t+1)|#
#=1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|#.
Finally, #I=I_1+I_2#
#=1/sqrt2arc tan{(tanx-1)/(sqrt(2tanx))}#
#+1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|+C#.
Enjoy Maths.!