How do you integrate sqrttanxtanx?

2 Answers
Sep 22, 2016

1/sqrt2arc tan{(tanx-1)/(sqrt(2tanx))}12arctan{tanx12tanx}
+1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|+C+122lntanx2tanx+1tanx+2tanx+1+C.

Explanation:

Let I=intsqrttanxdxI=tanxdx.

We subst. tanx=t^2", so that, "sec^2xdx=2tdttanx=t2, so that, sec2xdx=2tdt, or,

dx=(2tdt)/sec^2x=(2tdt)/(1+tan^2x)=(2tdt)/(1+t^4).dx=2tdtsec2x=2tdt1+tan2x=2tdt1+t4. Hence,

I=int{t*(2t)/(1+t^4)}dt=int(2t^2)/(1+t^4)dt=int2/(t^2+1/t^2)dtI={t2t1+t4}dt=2t21+t4dt=2t2+1t2dt

=int((1+1/t^2)+(1-1/t^2))/(t^2+1/t^2)dt=(1+1t2)+(11t2)t2+1t2dt

=int(1+1/t^2)/(t^2+1/t^2)dt+int(1-1/t^2)/(t^2+1/t^2)dt=I_1+I_2, say=1+1t2t2+1t2dt+11t2t2+1t2dt=I1+I2,say,

where, I_1=int(1+1/t^2)/(t^2+1/t^2)dt.I1=1+1t2t2+1t2dt.

Subst. t-1/t=u rArr (1+1/t^2)dt=du, &, t^2+1/t^2=u^2+2.t1t=u(1+1t2)dt=du,&,t2+1t2=u2+2.

:. I_1=int1/(u^2+(sqrt2)^2)du=1/sqrt2arc tan(u/sqrt2).

For, I_2=int(1-1/t^2)/(t^2+1/t^2)dt,

we take, (t+1/t)=v rArr (1-1/t^2)dt=dv, &, t^2+1/t^2=v^2-2.

:. I_2=int1/(v^2-(sqrt2)^2)dv=1/(2sqrt2)*ln|(v-sqrt2)/(v+sqrt2)|.

Thus, I_1=1/sqrt2arc tan((t-1/t)/sqrt2)=1/sqrt2arc tan{(t^2-1)/(sqrt2t)}

=1/sqrt2arc tan{(tanx-1)/sqrt(2tanx)}, and,

I_2=1/(2sqrt2)ln|(t+1/t-sqrt2)/(t+1/t+sqrt2)|

=1/(2sqrt2)ln|(t^2-sqrt2t+1)/(t^2+sqrt2t+1)|

=1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|.

Finally, I=I_1+I_2

=1/sqrt2arc tan{(tanx-1)/(sqrt(2tanx))}
+1/(2sqrt2)ln|(tanx-sqrt(2tanx)+1)/(tanx+sqrt(2tanx)+1)|+C.

Enjoy Maths.!

Sep 23, 2016

I=int sqrttanxdx

=1/2int (2sqrttanx)dx

=1/2[int (sqrttanx+sqrtcotx)dx+ int(sqrttanx-sqrtcotx)dx]

Let
I_1=int (sqrttanx+sqrtcotx)dx

=sqrt2int (sinx+cosx)/sqrt(2sinxcosx)dx

=sqrt2int (sinx+cosx)/sqrt(1-(sinx-cosx)^2)dx

If sinx -cosx =u " then " du =(sinx+cosx)dx

So

I_1=sqrt2int1/sqrt(1-u^2) du=sqrt2sin^-1u
=sqrt2sin^-1(sinx-cosx)

Similarly
I_2=int (sqrttanx-sqrtcotx)dx

=sqrt2int (sinx-cosx)/sqrt(2sinxcosx)dx

=-sqrt2int (cosx-sinx)/sqrt((sinx+cosx)^2-1)dx

If sinx +cosx =v" then " dv =(cosx-sinx)dx

So

I_2=-sqrt2int1/sqrt(v^2-1) dv=-sqrt2lnabs(v+sqrt(v^2-1))
=-sqrt2(lnabs((sinx+cosx)+sqrt(2sinxcosx)))

I=1/2(I_1+I_2)

=1/2[sqrt2sin^-1(sinx-cosx)-sqrt2lnabs((sinx+cosx)+sqrt(2sinxcosx))]+C

=1/sqrt2[sin^-1(sinx-cosx)-lnabs((sinx+cosx)+sqrt(2sinxcosx))]+C