What is the integral of 1(tanx)2sec(x)2?

1 Answer
Feb 14, 2016

12(2x+sin(2x))x+C

Explanation:

Using the following relation,
tan2x=1sec2x

1+1sec2(x)sec2(x)dx

Applying sum rule,
f(x)±g(x)dx=f(x)dx±g(x)dx

1sec2xdx+1sec2(x)dxsec2(x)sec2(x)dx....... eq(i)

1sec2(x)dx=14(2x+sin(2x))

1sec2(x)dx=14(2x+sin(2x))

sec2(x)sec2(x)dx=x

Substituting the values in eqn (i) we get,
14(2x+sin(2x)+14(2x+sin(2x))x

Simplifying we get
12(2x+sin(2x))x+C