How do I find the antiderivative of f(x)=tan(2x) + tan(4x)?

1 Answer
Mar 4, 2018

-1/2ln|(cos2x)|-1/4ln|(cos4x)|+c

or

1/2ln|sec2x|+1/4ln|sec4x|+c

Explanation:

the anti derivative is another way of saying integration

so the anti derivative of f(x)=tan2x+tan4x

=int(tan2x+tan4x)dx---(1)

we will use teh relationship

int(f'(x))/(f(x))dx=ln|f(x)|+c

(1)rarrint((sin2x)/(cos2x)+(sin4x)/(cos4x))dx--(2)

now

d/dx(cosnx)=-nsinnx

so (2)rarr=-1/2ln|(cos2x)|-1/4ln|(cos4x)|+c--(3)

because -ln|cosx|=ln(1/|(cosx)|)=ln|secx|

(3)rarr=1/2ln|sec2x|+1/4ln|sec4x|+c