How do you find the antiderivative of int sin^4xdxsin4xdx?

1 Answer
Jan 20, 2017

int sin^4xdx = - (sin^3x cosx )/4-3/8sinxcosx +3/8x+Csin4xdx=sin3xcosx438sinxcosx+38x+C

Explanation:

As d(cosx) = -sinx dxd(cosx)=sinxdx we can write the integral as:

int sin^4xdx = int sin^3 sinx dx = - int sin^3 d(cosx)sin4xdx=sin3sinxdx=sin3d(cosx)

and integrate by parts:

int sin^4xdx = - sin^3x cosx + 3 int sin^2x cos^2x dxsin4xdx=sin3xcosx+3sin2xcos2xdx

Now applying the identity:

cos^2x = 1 - sin^2xcos2x=1sin2x

int sin^4xdx = - sin^3x cosx + 3 int sin^2x (1-sin^2x) dxsin4xdx=sin3xcosx+3sin2x(1sin2x)dx

and as the integral is linear:

int sin^4xdx = - sin^3x cosx + 3 int sin^2xdx -3intsin^4x dxsin4xdx=sin3xcosx+3sin2xdx3sin4xdx

we have now the integral on both sides and we can solve for it:

int sin^4xdx = - (sin^3x cosx )/4+ 3/4 int sin^2xdx sin4xdx=sin3xcosx4+34sin2xdx

We can now apply the same process for the integral:

int sin^2xdx = -int sinx (dcosx) = -sinxcosx + int cos^2xdx = -sinxcosx + int (1-sin^2x)dx = -sinxcosx + int dx - int sin^2xdxsin2xdx=sinx(dcosx)=sinxcosx+cos2xdx=sinxcosx+(1sin2x)dx=sinxcosx+dxsin2xdx

and we get:

int sin^2xdx = -(sinxcosx)/2 +x/2+C'

Putting it together:

int sin^4xdx = - (sin^3x cosx )/4-3/8sinxcosx +3/8x+C

Note that you can write this result in an interesting form: first we use the identity:

2sinx cosx = sin2x

- (sin^3x cosx )/4-3/8sinxcosx +3/8x = - (sin^2x sin2x)/8 -3/16sin2x +3/8x

than we use:

sin^2x = (1-cos2x)/2

- (sin^2x sin2x)/8 -3/16sin2x +3/8x = - ((1-cos2x) sin2x)/16 -3/16sin2x +3/8x = 1/32sin4x - 1/4sin2x +3/8x