How do you find ∫1−tan2xdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Jim H · Tom Nov 15, 2015 Use trigonometric identity: tan2x=sec2x−1 to rewrite. Explanation: ∫(1−tan2x)dx=∫(1−(sec2x−1))dx =∫(2−sec2x)dx =2x−tanx+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 4893 views around the world You can reuse this answer Creative Commons License