How do you integrate 1/tan(x) dx?

2 Answers
Feb 13, 2017

int 1/tan x dx = ln abs(sin x) + C

Explanation:

Note that:

int 1/t dt = ln abs(t) + C

So we find:

int 1/tan x dx = int cos x/sin x dx

color(white)(int 1/tan x dx) = int (d/dx sin x)*1/sin x dx

color(white)(int 1/tan x dx) = ln abs(sin x) + C

Feb 13, 2017

int dx/tanx = int cosx/sinx dx = int (d(sinx))/sinx = ln abs (sinx)+ C