Since, #cos3x-1=(4cos^3x-3cosx)-1#, we find that,
#cos3x-1# is a cubic polynomial in #cosx#, and noting that the sum
of its co-efficients being #0, (cosx-1)# is a factor.
Thus, #cos3x-1=4cos^3x-3cosx-1#,
#=ul(4cos^3x-4cos^2x)+ul(4cos^2x-4cosx)+ul(cosx-1)#,
#=4cos^2x(cosx-1)+4cosx(cosx-1)+1(cosx-1)#,
#=(cosx-1)(4cos^2x+4cosx+1)#
#=(cosx-1){2(1+cos2x)+4cosx+1}#,
#:. (cos3x-1)=(cosx-1)(2cos2x+4cosx+3)#.
# rArr (cos3x-1)/(cosx-1)=(2cos2x+4cosx+3)#.
#:. int(1-cos3x)/(1-cosx)dx=int(cos3x-1)/(cosx-1)dx#,
#=int(2cos2x+4cosx+3)dx#,
#=2*(sin2x)/2+4sinx+3x#.
# rArr int(1-cos3x)/(1-cosx)dx=sin2x+4sinx+3x+C#.
Feel the Joy of Maths.!