How do you integrate ((cosx)^3 sinx )/(4sqrt{1-(cosx)^4})dx?

1 Answer
Apr 17, 2015

This integral is very easy, explanation :

1/4int(cos^3(x)*sin(x))/(sqrt(1-cos^4(x)))dx

Let's t=cos(x)

So dt = -sin(x)dx

1/2intt^3/(2(sqrt(1-t^4)))d(-t) = 1/2int(-t^3)/(2sqrt(1-t^4))dt

Let's u = 1-t^4

So du = -4t^3dt

=>1/8int(-4t^3)/(2sqrt(1-t^4))dt

=>1/8int1/(2sqrt(u))du

= 1/8[sqrt(u)]

Substitute back for u = 1-t^4 and t=cos(x)

= 1/8[sqrt(1-cos^4(x))] + C

With habits you can directly do t = 1 - cos^4(x)

dt = 4sin(x)cos^3(x)