What is int sin^3x/cos^6x dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Bio Nov 23, 2015 int frac{sin^3x}{cos^6x} dx = -frac{1}{3cos^3x} + frac{1}{5cos^5x} + c, where c is the constant of integration. Explanation: Use the substitution u=cosx. frac{du}{dx} = -sinx int frac{sin^3x}{cos^6x} dx = int frac{cos^2x-1}{cos^6x} (-sinx) dx = int frac{u^2-1}{u^6} frac{du}{dx} dx = int (u^{-4} - u^{-6}) du = frac{u^{-3}}{-3} - frac{u^{-5}}{-5} + c, where c is the constant of integration. = -frac{1}{3cos^3x} + frac{1}{5cos^5x} + c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 11115 views around the world You can reuse this answer Creative Commons License