What is int sin^3x/cos^6x dx?

1 Answer
Nov 23, 2015

int frac{sin^3x}{cos^6x} dx = -frac{1}{3cos^3x} + frac{1}{5cos^5x} + c,

where c is the constant of integration.

Explanation:

Use the substitution u=cosx.

frac{du}{dx} = -sinx

int frac{sin^3x}{cos^6x} dx = int frac{cos^2x-1}{cos^6x} (-sinx) dx

= int frac{u^2-1}{u^6} frac{du}{dx} dx

= int (u^{-4} - u^{-6}) du

= frac{u^{-3}}{-3} - frac{u^{-5}}{-5} + c,

where c is the constant of integration.

= -frac{1}{3cos^3x} + frac{1}{5cos^5x} + c