How do you integrate int [(x-1) / (cos^2 x)]dx?

1 Answer
Jun 2, 2018

I=(x-1)tanx-ln|secx|+c

Explanation:

Here,

I=int[(x-1)/cos^2x]dx

int(x-1)sec^2xdx

"Using "color(blue)"Integration by Parts :"

color(blue)(intu*vdx=uintvdx-int(u'intvdx)dx

Let,

u=x-1 and v=sec^2x=>u'=1 and intvdx=tanx

So,

I=(x-1)*tanx-int1*tanxdx

I=(x-1)tanx-ln|secx|+c