How do you integrate int [(x-1) / (cos^2 x)]dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer maganbhai P. Jun 2, 2018 I=(x-1)tanx-ln|secx|+c Explanation: Here, I=int[(x-1)/cos^2x]dx int(x-1)sec^2xdx "Using "color(blue)"Integration by Parts :" color(blue)(intu*vdx=uintvdx-int(u'intvdx)dx Let, u=x-1 and v=sec^2x=>u'=1 and intvdx=tanx So, I=(x-1)*tanx-int1*tanxdx I=(x-1)tanx-ln|secx|+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1830 views around the world You can reuse this answer Creative Commons License