How do you integrate (sec(x)^2-1)(sin(x)/cos(x))(sec(x)21)(sin(x)cos(x))?

1 Answer
Jan 13, 2017

int(sec^2x-1)(sinx/cosx)dx=tan^2x/2+lncosx+c(sec2x1)(sinxcosx)dx=tan2x2+lncosx+c

Explanation:

int(sec^2x-1)(sinx/cosx)dx(sec2x1)(sinxcosx)dx

=int(sec^2x xxsinx/cosx)dx-intsinx/cosxdx=(sec2x×sinxcosx)dxsinxcosxdx

=intsec^2xtanxdx-intsinx/cosxdx=sec2xtanxdxsinxcosxdx

Let us first solve intsec^2xtanxdxsec2xtanxdx

let u=tanxu=tanx, then du=sec^2xdxdu=sec2xdx

Hence intsec^2xtanxdx=intudusec2xtanxdx=udu

=u^2/2=tan^2x/2=u22=tan2x2

For intsinx/cosxdxsinxcosxdx, let v=cosxv=cosx than dv=-sinxdxdv=sinxdx and

intsinx/cosxdx=int-dv/v=-lnv=-lncosxsinxcosxdx=dvv=lnv=lncosx

Hence int(sec^2x-1)(sinx/cosx)dx=tan^2x/2+lncosx+c(sec2x1)(sinxcosx)dx=tan2x2+lncosx+c