How do you find the integral of int sin^5(x)cos^8(x) dx?

1 Answer
Sep 27, 2015

-cos^9x/9 + (2cos^11x)/11 - cos^13x/13 + C

Explanation:

I=int sin^5x cos^8xdx=intsinx sin^4x cos^8x dx

I=int sinx (sin^2x)^2 cos^8xdx=int (1-cos^2x)^2 cos^8x sinx dx

cosx=t => -sinxdx=dt => sinxdx=-dt

I=int (1-t^2)^2 t^8 (-dt) = -int (1-2t^2+t^4)t^8 dt

I=-int (t^8-2t^10+t^12) dt = -t^9/9+(2t^11)/11-t^13/13+C

I=-cos^9x/9 + (2cos^11x)/11 - cos^13x/13 + C