How do you find the antiderivative of (cosx)/(x) ? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer A. S. Adikesavan Jun 28, 2016 ln x-(1/2)sum(-1)^nx^(2n)/(n(2n)!)+C, n=1, 2, 3,..., and 0 < x<=1 . Explanation: cos x/x = sum((-1)^nx^(2n-1))/(2n)!, n=0, 1, 2, 3, .., .for non-zero x. int cos x /x dx= int sum((-1)^nx^(2n-1))/(2n)!, n=0, 1, 2, 3, .., and# 0 < x<=1#. =ln x-(1/2)sum(-1)^nx^(2n)/(n(2n)!)+C, n=1, 2, 3,..., and 0 < x<=1 . Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3654 views around the world You can reuse this answer Creative Commons License