How do you find the integral of 1/cos x?
1 Answer
Apr 30, 2016
Explanation:
Note that
int1/cosxdx=intsecxdx
This is an important trigonometric identity:
intsecxdx=lnabs(secx+tanx)+C
If you want to know how to find
intsecxdx=int(secx(secx+tanx))/(secx+tanx)dx=int(secxtanx+sec^2x)/(secx+tanx)dx
Now, use substitution:
u=secx+tanx" "=>" "du=(secxtanx+sec^2x)dx
Note that these are the fraction's numerator and denominator.
int(secxtanx+sec^2x)/(secx+tanx)dx=int(du)/u=lnabsu+C
Since
intsecxdx=lnabs(secx+tanx)+C