How do you find the integral of 1/cos x?

1 Answer
Apr 30, 2016

lnabs(secx+tanx)+C

Explanation:

Note that 1/cosx=secx. Thus, we see that

int1/cosxdx=intsecxdx

This is an important trigonometric identity:

intsecxdx=lnabs(secx+tanx)+C


If you want to know how to find intsecxdx, the process is unintuitive, but I've outlined it below:

intsecxdx=int(secx(secx+tanx))/(secx+tanx)dx=int(secxtanx+sec^2x)/(secx+tanx)dx

Now, use substitution:

u=secx+tanx" "=>" "du=(secxtanx+sec^2x)dx

Note that these are the fraction's numerator and denominator.

int(secxtanx+sec^2x)/(secx+tanx)dx=int(du)/u=lnabsu+C

Since u=secx+tanx, we obtain

intsecxdx=lnabs(secx+tanx)+C