What is the integral of int tan^2(3x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Bio Jan 17, 2016 int tan^2(3x) dx = 1/3 tan(3x) - x + C where C is the constant of integration Explanation: You should know the identity tan^2theta-=sec^2theta-1. int tan^2(3x) dx = int (sec^2(3x)-1) dx = 1/3 tan(3x) - x + C where C is the constant of integration. Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 18410 views around the world You can reuse this answer Creative Commons License