What is the integral of int (tan(2x))^2?

1 Answer
Aug 30, 2016

1/2tan(2x)-x+C

Explanation:

Note that (tan(2x))^2=tan^2(2x).

We have:

inttan^2(2x)dx

Recall that, through the Pythagorean identity, tan^2(x)=sec^2(x)-1.

=int(sec^2(2x)-1)dx

Split up the integral:

=intsec^2(2x)dx-intdx

=intsec^2(2x)dx-x

Now, let u=tan(2x). This means that du=2sec^2(2x)dx.

=1/2int2sec^2(2x)dx-x

=1/2intdu-x

=1/2u-x+C

=1/2tan(2x)-x+C