What is the integral of int (tan(2x))^2?
1 Answer
Aug 30, 2016
Explanation:
Note that
We have:
inttan^2(2x)dx
Recall that, through the Pythagorean identity,
=int(sec^2(2x)-1)dx
Split up the integral:
=intsec^2(2x)dx-intdx
=intsec^2(2x)dx-x
Now, let
=1/2int2sec^2(2x)dx-x
=1/2intdu-x
=1/2u-x+C
=1/2tan(2x)-x+C