How do you find the integral of #sec(3x)sec(3x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Harish Chandra Rajpoot Jul 23, 2018 #1/3\tan(3x)+C# Explanation: Given that #\int \sec(3x)\sec(3x)\ dx# #=\int \sec^2(3x)\ dx# #=1/3\int \sec^2(3x)\3 dx# #=1/3\int \sec^2(3x)\d(3x)# #=1/3\tan(3x)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 2020 views around the world You can reuse this answer Creative Commons License