How do you find the integral of sec(3x)sec(3x)sec(3x)sec(3x)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Harish Chandra Rajpoot Jul 23, 2018 1/3\tan(3x)+C13tan(3x)+C Explanation: Given that \int \sec(3x)\sec(3x)\ dx =\int \sec^2(3x)\ dx =1/3\int \sec^2(3x)\3 dx =1/3\int \sec^2(3x)\d(3x) =1/3\tan(3x)+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 2159 views around the world You can reuse this answer Creative Commons License