How do you find the integral of int cos^5xsin^4xdxcos5xsin4xdx?

1 Answer

Refer to explanation

Explanation:

We have that

int cos^5xsin^4xdx=intcosx*cos^4x*sin^4xdx= intcosx(1-sin^2x)*(1-sin^2x)*sin^4xdxcos5xsin4xdx=cosxcos4xsin4xdx=cosx(1sin2x)(1sin2x)sin4xdx

We set sinx=tsinx=t hence dxcosx=dtdxcosx=dt so we have

int(1-t^2)(1-t^2)*t^4dt=int(t^4+t^8-2t^6)dt= t^5/5+t^9/9-2y^7/7+c(1t2)(1t2)t4dt=(t4+t82t6)dt=t55+t992y77+c

Hence we replace with sinxsinx to get

int cos^5xsin^4xdx=sin^5x/5+sin^9x/9-2*sin^7x/7+ccos5xsin4xdx=sin5x5+sin9x92sin7x7+c