How do you find the integral of #x(sin^2(ax))#?

1 Answer
Oct 17, 2016

#(2a^2x^2-2axsin(2ax)-cos(2ax))/(8a^2)+C#

Explanation:

#I=intxsin^2(ax)dx#

First, let #t=ax#. This implies that #dt=adx#. Note that this means that #x=t/a# and #dx=(dt)/a#.

#I=intt/asin^2(t)dt/a=1/a^2inttsin^2(t)dt#

This will become easier if we rewrite #sin^2(t)# to make it easier to manipulate, a common trick in integrals of this sort. We will use one version of the cosine double angle formula:

#cos(2t)=1-2sin^2(t)" "=>" "sin^2(t)=1/2(1-cos(2t))#

Using this equivalency, the integral becomes:

#I=1/a^2intt/2(1-cos(2t))dt#

#I=1/(2a^2)int(t-tcos(2t))dt#

Splitting up the integral:

#I=1/(2a^2)inttdt-1/(2a^2)inttcos(2t)dt#

The first integral can be performed easily using the power rule for integration:

#I=1/(2a^2)(t^2/2)-1/(2a^2)inttcos(2t)dt#

#I=t^2/(4a^2)-1/(2a^2)inttcos(2t)dt#

This is another technically unnecessary substitution, but it clears up the following steps. Let #s=2t#, implying that #ds=2dt#. Thus, #dt=(ds)/2# and #t=s/2#.

#I=t^2/(4a^2)-1/(2a^2)ints/2cos(s)(ds)/2#

#I=t^2/(4a^2)-1/(8a^2)intscos(s)ds#

For this integral, we will use integration by parts, which takes the form #intudv=uv-intvdu#. We will let:

#{(u=s" "=>" "du=ds),(dv=cos(s)ds" "=>" "v=sin(s)):}#

Plugging these into the formula:

#I=t^2/(4a^2)-1/(8a^2)[ssin(s)-intsin(s)ds]#

Since #intsin(s)ds=-cos(s)#:

#I=t^2/(4a^2)-1/(8a^2)(ssin(s)+cos(s))#

#I=t^2/(4a^2)-(ssin(s))/(8a^2)-cos(s)/(8a^2)#

Back-substituting with #s=2t#:

#I=t^2/(4a^2)-(2tsin(2t))/(8a^2)-cos(2t)/(8a^2)#

#I=t^2/(4a^2)-(tsin(2t))/(4a^2)-cos(2t)/(8a^2)#

Back-substituting with #t=ax#:

#I=(ax)^2/(4a^2)-(axsin(2ax))/(4a^2)-cos(2ax)/(8a^2)#

#I=(a^2x^2)/(4a^2)-(xsin(2ax))/(4a)-cos(2ax)/(8a^2)#

#I=(x^2)/4-(xsin(2ax))/(4a)-cos(2ax)/(8a^2)#

If we want a common denominator:

#I=(2a^2x^2-2axsin(2ax)-cos(2ax))/(8a^2)+C#