What is the integral of int sin^3(x) cos^5(x) dx?

1 Answer
Mar 8, 2016

int sin^3 x* cos^5 x* d x=-1/6 cos^6 x+1/8 cos^8 x+C

Explanation:

int sin^3 x* cos^5 x* d x=int sin x*sin^2 x* cos^5 x* d x
sin^2 x=1-cos^2 x
int color(red)(sin x)(1-cos^2 x) cos^5 x *color(red)(d x)
u=cos x" "d u=-sin x*d x
-int (cos^5 x-cos^7 x)d u=-int(u⁵-u^7)d u
int sin^3 x* cos^5 x* d x=-int u^5 d u +int u^7 d u+C
int sin^3 x* cos^5 x* d x=-1/6u^6+1/8u^8+C
int sin^3 x* cos^5 x* d x=-1/6 cos^6 x+1/8 cos^8 x+C