How do you find the antiderivative of sqrt cosx?

1 Answer
Oct 21, 2016

2E(x/2 | 2)+C

Explanation:

I=intsqrtcos(x)dx

Using the cosine double angle formula cos(2x)=1-2sin^2(x), we also see that cos(x)=1-2sin^2(x/2):

I=sqrt(1-2sin^2(x/2))dx

Letting u=x/2 and du=1/2dx:

I=2intsqrt(1-2sin^2(u))du

This is a special integral, namely the incomplete elliptic of the second kind E. It is defined by E(varphi|k^2)=int_0^varphisqrt(1-k^2sin^2(theta))d theta.

So, here, we see that:

I=2E(u|2)+C=2E(x/2 | 2)+C