How do you find the integral of tan^2 (x)sec(x) dx?

2 Answers
Apr 25, 2015

tan^3x /3 +C

This can be easily be solved by using substitution. Let tan x =u, so that sec^2x dx=du

int tan^2x sec x dx= intu^2du= u^3/3 +C=tan^3x /3 +C

Apr 26, 2015

1/2 secx tanx -1/2 ln(secx +tanx)

Rewrite integral as, int(sec^2x-1)sec xdx= intsec^3xdx-int secx dx. Now solve int sec^3x dx by integrating by parts, (sec x) sec^2 x

=sec x tanx - int secx tanx tanx dx = sec x tan x -int secx tan^2 xdx

= secx tanx -int secx (sec^2x-1)dx = secx tanx - int sec^3x dx + int sec xdx. Now transpose sec^3xdx to the other side and have

intsec^3x dx= 1/2 secx tan x +1/2 int secx dx. Thus it is,

int tan^2x secx dx= 1/2 secx tan x +1/2 int secx dx -int sec xdx

= 1/2 sec x tan x -1/2int secx dx

= 1/2 secx tan x-1/2 ln(secx+tanx) +C