How do you find the integral of tan2(x)sec(x)dx?

2 Answers
Apr 25, 2015

tan3x3 +C

This can be easily be solved by using substitution. Let tan x =u, so that sec2x dx=du

tan2xsecxdx= u2du= u33 +C=tan3x3 +C

Apr 26, 2015

12secxtanx12ln(secx+tanx)

Rewrite integral as, (sec2x1)secxdx= sec3xdxsecxdx. Now solve sec3xdx by integrating by parts, (secx)sec2x

=sec x tanx - secxtanxtanxdx = sec x tan x -secxtan2xdx

= secx tanx -secx(sec2x1)dx = secx tanx - sec3xdx+secxdx. Now transpose sec3xdx to the other side and have

sec3xdx= 12secxtanx+12secxdx. Thus it is,

tan2xsecxdx=12secxtanx+12secxdxsecxdx

= 12secxtanx12secxdx

= 12secxtanx12ln(secx+tanx) +C