How do you find int 1-tanx^2dx∫1−tanx2dx?
1 Answer
Dec 3, 2015
Explanation:
We can start of by doing the following
Then integrate the first integral
= x- int(sec^2x -1)dx=x−∫(sec2x−1)dx
Rewrite using trigonometric identity
color(red)(tan^2 x = sec^2x - 1)tan2x=sec2x−1
= x- [int(sec^2x) dx -int1dx]=x−[∫(sec2x)dx−∫1dx]
color(red)(int (sec^2x dx= tan x + C)∫(sec2xdx=tanx+C)
= x- [ tan x -x] +C=x−[tanx−x]+C
= 2x- tan x +C=2x−tanx+C