int (sinx)^2*(cosx)^6*dx
=int [1-(cosx)^2]*(cosx)^6*dx
=int (cosx)^6*dx-int (cosx)^8*dx
After using int (cosx)^n*dx=1/n(cosx)^(n-1)*sinx+(n-1)/nint(cosx)^(n-2)*dx reduction formula,
int (sinx)^2*(cosx)^6*dx
=int (cosx)^6*dx-int (cosx)^8*dx
=int (cosx)^6*dx-[1/8(cosx)^7*sinx+7/8int (cosx)^6*dx]
=1/8int (cosx)^6*dx-1/8(cosx)^7*sinx
=1/8*[1/6(cosx)^5*sinx+5/6int (cosx)^4*dx]-1/8(cosx)^7*sinx
=5/48int (cosx)^4*dx+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx
=5/48*[1/4(cosx)^3*sinx+3/4int (cosx)^2*dx]+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx
=5/192(cosx)^3*sinx+5/64int (cosx)^2*dx+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx
=5/192(cosx)^3*sinx+5/128int (1+cos2x)*dx+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx
=5/192(cosx)^3*sinx+5/128*x+5/256sin2x+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx+C