How do you find the integral of sin^2(x)cos^6(x) dx?

1 Answer
Mar 21, 2018

(-1/8(cosx)^7+1/48(cosx)^5+5/192(cosx)^3)*sinx+5/256sin2x+5/1280x+C

Explanation:

int (sinx)^2*(cosx)^6*dx

=int [1-(cosx)^2]*(cosx)^6*dx

=int (cosx)^6*dx-int (cosx)^8*dx

After using int (cosx)^n*dx=1/n(cosx)^(n-1)*sinx+(n-1)/nint(cosx)^(n-2)*dx reduction formula,

int (sinx)^2*(cosx)^6*dx

=int (cosx)^6*dx-int (cosx)^8*dx

=int (cosx)^6*dx-[1/8(cosx)^7*sinx+7/8int (cosx)^6*dx]

=1/8int (cosx)^6*dx-1/8(cosx)^7*sinx

=1/8*[1/6(cosx)^5*sinx+5/6int (cosx)^4*dx]-1/8(cosx)^7*sinx

=5/48int (cosx)^4*dx+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx

=5/48*[1/4(cosx)^3*sinx+3/4int (cosx)^2*dx]+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx

=5/192(cosx)^3*sinx+5/64int (cosx)^2*dx+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx

=5/192(cosx)^3*sinx+5/128int (1+cos2x)*dx+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx

=5/192(cosx)^3*sinx+5/128*x+5/256sin2x+1/48(cosx)^5*sinx-1/8(cosx)^7*sinx+C