What is the integral of int sin^(4) (2x) dxsin4(2x)dx?

2 Answers
Apr 24, 2018

int sin^4(2x) dx= (3x)/8-(sin(4x))/8 + (sin(8x))/64+Csin4(2x)dx=3x8sin(4x)8+sin(8x)64+C

Explanation:

Use the trigonometric identities:

sin^2 alpha = (1-cos2alpha)/2sin2α=1cos2α2

cos^2 alpha = (1+cos2alpha)/2cos2α=1+cos2α2

to have:

sin^4(2x) = (sin^2(2x))^2 = (1-cos(4x))^2/4sin4(2x)=(sin2(2x))2=(1cos(4x))24

sin^4(2x) = (1-2cos(4x) +cos^2(4x))/4sin4(2x)=12cos(4x)+cos2(4x)4

sin^4(2x) = 1/4-(cos(4x))/2 +1/8 +(cos(8x))/8sin4(2x)=14cos(4x)2+18+cos(8x)8

sin^4(2x) = 3/8-(cos(4x))/2 +(cos(8x))/8sin4(2x)=38cos(4x)2+cos(8x)8

Using the linearity of the integral:

int sin^4(2x) dx= 3/8int dx-1/2 int cos(4x)dx +1/8 intcos(8x)dxsin4(2x)dx=38dx12cos(4x)dx+18cos(8x)dx

int sin^4(2x) dx= (3x)/8-1/8 int cos(4x)d(4x) +1/64 intcos(8x)d(8x)sin4(2x)dx=3x818cos(4x)d(4x)+164cos(8x)d(8x)

int sin^4(2x) dx= (3x)/8-(sin(4x))/8 + (sin(8x))/64+Csin4(2x)dx=3x8sin(4x)8+sin(8x)64+C

Apr 24, 2018

The answer is =1/64sin(8x)-1/8sin(4x)+3/8x+C=164sin(8x)18sin(4x)+38x+C

Explanation:

Apply Euler's identity

sin(2x)=(e^(2ix)-e^(-2ix))/(2i)sin(2x)=e2ixe2ix2i

e^(ix)=cosx+isinxeix=cosx+isinx

Therefore,

sin^4(2x)=((e^(2ix)-e^(-2ix))/(2i))^4sin4(2x)=(e2ixe2ix2i)4

=1/16((e^(i8x)+e^(-i8x))-4(e^(i4x)+e^(-i4x))+6)=116((ei8x+ei8x)4(ei4x+ei4x)+6)

=1/8((e^(i8x)+e^(-i8x))/2-4(e^(i4x)+e^(-i4x))/2+6/2)=18(ei8x+ei8x24ei4x+ei4x2+62)

=1/8cos(8x)-1/2cos(4x)+3/8=18cos(8x)12cos(4x)+38

So,

intsin^4(2x)dx=int(1/8cos(8x)-1/2cos(4x)+3/8)dxsin4(2x)dx=(18cos(8x)12cos(4x)+38)dx

=1/64sin(8x)-1/8sin(4x)+3/8x+C=164sin(8x)18sin(4x)+38x+C