Use the trigonometric identities:
sin^2 alpha = (1-cos2alpha)/2sin2α=1−cos2α2
cos^2 alpha = (1+cos2alpha)/2cos2α=1+cos2α2
to have:
sin^4(2x) = (sin^2(2x))^2 = (1-cos(4x))^2/4sin4(2x)=(sin2(2x))2=(1−cos(4x))24
sin^4(2x) = (1-2cos(4x) +cos^2(4x))/4sin4(2x)=1−2cos(4x)+cos2(4x)4
sin^4(2x) = 1/4-(cos(4x))/2 +1/8 +(cos(8x))/8sin4(2x)=14−cos(4x)2+18+cos(8x)8
sin^4(2x) = 3/8-(cos(4x))/2 +(cos(8x))/8sin4(2x)=38−cos(4x)2+cos(8x)8
Using the linearity of the integral:
int sin^4(2x) dx= 3/8int dx-1/2 int cos(4x)dx +1/8 intcos(8x)dx∫sin4(2x)dx=38∫dx−12∫cos(4x)dx+18∫cos(8x)dx
int sin^4(2x) dx= (3x)/8-1/8 int cos(4x)d(4x) +1/64 intcos(8x)d(8x)∫sin4(2x)dx=3x8−18∫cos(4x)d(4x)+164∫cos(8x)d(8x)
int sin^4(2x) dx= (3x)/8-(sin(4x))/8 + (sin(8x))/64+C∫sin4(2x)dx=3x8−sin(4x)8+sin(8x)64+C