Question #6c613

1 Answer
Jan 2, 2017

arctan2(2x)4+C

Explanation:

Note I'll be using the format arctan(x) instead of arctg(x).

arctan(2x)1+4x2dx

Note that since ddxarctan(x)=11+x2, we see that ddxarctan(2x)=11+(2x)2ddx(2x)=21+4x2.

So, if we try the substitution u=arctan(2x), then du=21+4x2dx. We currently have 11+4x2dx in the integrand, so we are just off by a factor of 2.

arctan(2x)1+4x2dx=12arctan(2x)21+4x2dx=12u.du

Now use the rule undu=un+1n+1:

arctan(2x)1+4x2dx=12u22=u24=arctan2(2x)4+C