What's the integral of int (tan(x))^2 * sec(x) dx∫(tan(x))2⋅sec(x)dx?
1 Answer
Explanation:
We have:
I=inttan^2xsecxdxI=∫tan2xsecxdx
Write
I=int(sec^2x-1)secxdxI=∫(sec2x−1)secxdx
I=intsec^3xdx-intsecxdxI=∫sec3xdx−∫secxdx
The second is a commonly known integral:
I=intsec^3xdx-ln(abs(secx+tanx))I=∫sec3xdx−ln(|secx+tanx|)
Now, for the remaining integral, we will try to use integration by parts, which takes the form:
intudv=uv-intvdu∫udv=uv−∫vdu
So, let:
{(u=secx" "=>" "du=secxtanxdx),(dv=sec^2xdx" "=>" "v=tanx):}
Thus:
I=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))
Now, notice that we have
intsecxtan^2xdx=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))
Add
2intsecxtan^2xdx=secxtanx-ln(abs(secx+tanx))
Divide both sides by
intsecxtan^2xdx=(secxtanx-ln(abs(secx+tanx)))/2+C