What's the integral of int (tan(x))^2 * sec(x) dx(tan(x))2sec(x)dx?

1 Answer
Aug 2, 2016

(secxtanx-ln(abs(secx+tanx)))/2+Csecxtanxln(|secx+tanx|)2+C

Explanation:

We have:

I=inttan^2xsecxdxI=tan2xsecxdx

Write tan^2xtan2x as sec^2x-1sec2x1.

I=int(sec^2x-1)secxdxI=(sec2x1)secxdx

I=intsec^3xdx-intsecxdxI=sec3xdxsecxdx

The second is a commonly known integral:

I=intsec^3xdx-ln(abs(secx+tanx))I=sec3xdxln(|secx+tanx|)

Now, for the remaining integral, we will try to use integration by parts, which takes the form:

intudv=uv-intvduudv=uvvdu

So, let:

{(u=secx" "=>" "du=secxtanxdx),(dv=sec^2xdx" "=>" "v=tanx):}

Thus:

I=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))

Now, notice that we have intsecxtan^2xdx in the problem here, which is what we started with. So, we also know that:

intsecxtan^2xdx=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))

Add intsecxtan^2xdx to both sides:

2intsecxtan^2xdx=secxtanx-ln(abs(secx+tanx))

Divide both sides by 2:

intsecxtan^2xdx=(secxtanx-ln(abs(secx+tanx)))/2+C