What's the integral of #int (tan(x))^2 * sec(x) dx#?
1 Answer
Explanation:
We have:
#I=inttan^2xsecxdx#
Write
#I=int(sec^2x-1)secxdx#
#I=intsec^3xdx-intsecxdx#
The second is a commonly known integral:
#I=intsec^3xdx-ln(abs(secx+tanx))#
Now, for the remaining integral, we will try to use integration by parts, which takes the form:
#intudv=uv-intvdu#
So, let:
#{(u=secx" "=>" "du=secxtanxdx),(dv=sec^2xdx" "=>" "v=tanx):}#
Thus:
#I=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))#
Now, notice that we have
#intsecxtan^2xdx=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))#
Add
#2intsecxtan^2xdx=secxtanx-ln(abs(secx+tanx))#
Divide both sides by
#intsecxtan^2xdx=(secxtanx-ln(abs(secx+tanx)))/2+C#