Question #1eebf Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Douglas K. Apr 7, 2017 int(cos(2x)/sqrt(1+sin(2x)))dx = sqrt(1+sin(2x))+ C∫(cos(2x)√1+sin(2x))dx=√1+sin(2x)+C Explanation: Let u = 1 + sin(2x)u=1+sin(2x), then du = 2cos(2x)dxdu=2cos(2x)dx cos(2x)dx = 1/2ducos(2x)dx=12du int(cos(2x)/sqrt(1+sin(2x)))dx = ∫(cos(2x)√1+sin(2x))dx= 1/2int(1/sqrtu)du = 12∫(1√u)du= sqrtu+C = √u+C= sqrt(1+sin(2x))+ C√1+sin(2x)+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx∫cos5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt∫sin2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx∫(1+cos(x))2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1500 views around the world You can reuse this answer Creative Commons License