What is the integral of int [4sec(x)]/[cos(x)] dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Konstantinos Michailidis Mar 20, 2016 It is int [4sec(x)]/[cos(x)] dx=int 4/(cos^2 x)dx=4*tanx+c Note secx=1/cosx Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1349 views around the world You can reuse this answer Creative Commons License