What is the Integral of tan^3(4x)?

1 Answer

We have that int(tan^3(4x)dx

Let u=4x
so, du/4=dx

Substitute in the integral

1/4int(tan^3(u))du
1/4int(tan^2u*tanu)du

Use the trigonometric identity: tan^2u=sec^2x-1

Hence

1/4int(sec^2(u)-1)(tan(u))du
1/4int(sec^2(u)tan(u)-tan(u))du
1/4(int(sec^2(u)tan(u)du-int(tan(u)du))
For the first integral (int(sec^2(u)tan(u))du):
Let p=tan(u)
dp=sec^2(u)du
so,
int(p)dp =p^2/2+c

For the second integral
(int(tan(u))du) =-ln|cos(u)|+c
put it all back in
1/4[(p^2/2)+(ln|cos(u)|))+c
substitute back:
1/4(tan^2u/2+ln|cos(u)|+c
substitute back for u:
tan^2(4x)/8+ln|cos(4x)|/4+c

finally

int(tan^3(4x))dx=tan^2(4x)/8+ln|cos(4x)|/4+c