What is the integral of int (csc2x)dx ?

1 Answer
Feb 26, 2016

int csc(2x) "d"x = -1/2 ln|csc(2x) + cot(2x)| + "constant"

int csc(2x) "d"x = 1/2 ln|tan(x)| + "constant"

Both answers are equivalent. Differentiate them if you have any doubt.

Explanation:

First, use the sin double angle formula sin2theta -= 2sinthetacostheta and the Pythagorean Identity sin^2theta + cos^2theta -= 1.

int csc(2x) "d"x = int 1/sin(2x) "d"x

= int 1/(2sin(x)cos(x)) "d"x

= int cos(x)/(2sin(x)cos^2(x)) "d"x

= 1/2 int cos(x)/(sin(x)(1-sin^2(x))) "d"x

Next, substitute u = sin(x).

frac{"d"u}{"d"x} = cos(x)

frac{"d"u}{"d"x} * "d"x = cos(x)*"d"x

1/2 int cos(x)/(sin(x)(1-sin^2(x))) "d"x = 1/2 int 1/(u(1-u^2)) "d"u

Next write the partial fractions.

1/2 int 1/(u(1-u^2)) "d"u = 1/2 int 1/u "d"u

- 1/4 int 1/(1+u) "d"u - 1/4 int 1/(u-1) "d"u

= 1/4 ln|u^2/(1-u^2)| + "constant"

Now revert u back to sin(x).

1/4 ln|u^2/(1-u^2)| = 1/4 ln|sin^2(x)/(1-sin^2(x))|

= 1/4 ln|sin^2(x)/cos^2(x)|

= 1/4 ln|tan^2(x)|

= 1/2 ln|tan(x)|