How do you find the integral of (1+ tan^2x)sec^2xdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Apr 13, 2015 int(1+tan^2(x))sec^2(x)dx We know : 1+tan^2(x) = 1/cos^2(x) sec^2(x) = 1/cos^2(x) So we have : int1/cos^4(x)dx Let's t = tan(x) and dt = 1/cos^2(x)dx We have : int1/cos^2(x)dt int1+tan^2dt int1+t^2dt [t+1/3t^3] [tan(x)+1/3tan^3(x)]+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3856 views around the world You can reuse this answer Creative Commons License