How do you integrate (cosx)^2dx(cosx)2dx?

1 Answer
Dec 1, 2016

int cos^2xdx = 1/2(x+1/2sin2x) + Ccos2xdx=12(x+12sin2x)+C

Explanation:

Considering that:

(dsinx)/dx = cosxdsinxdx=cosx

(dcosx)/dx = -sinxdcosxdx=sinx

int cos^2xdx =int cosx * cosx dx =int cosx d(sinx)cos2xdx=cosxcosxdx=cosxd(sinx)

Integrating by parts:

int cos^2xdx = sinxcosx - int sinx dcosx = cos2xdx=sinxcosxsinxdcosx=

= sinxcosx + int sin^2x dx = =sinxcosx+sin2xdx=

= sinxcosx + int (1-cos^2x) dx = =sinxcosx+(1cos2x)dx=

= sinxcosx + x - int cos^2x dx =sinxcosx+xcos2xdx

So:

2int cos^2xdx = sinxcosx + x2cos2xdx=sinxcosx+x

and finally:

int cos^2xdx = 1/2(x+1/2sin2x) + Ccos2xdx=12(x+12sin2x)+C

An alternative method is to use the identity:

cos(2x) = cos^2x-sin^2x = cos^2x - (1-cos^2x) = cos(2x)=cos2xsin2x=cos2x(1cos2x)=
= 2cos^2x-1=2cos2x1

so that:

cos^2x = (1+cos2x)/2cos2x=1+cos2x2

int cos^2xdx = int (1+cos2x)/2 dx = 1/2(x+1/2sin2x) + Ccos2xdx=1+cos2x2dx=12(x+12sin2x)+C