What is the integral of ∫sin3(x)cos3(x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer ali ergin Mar 7, 2016 ∫sin3xcos3xdx=14sin4x−15sin5x+C Explanation: ∫sin3xcos3xdx=? sinx=u cosxdx=du ∫sin3x⋅cos2x⋅cosx⋅dx cos2x=1−sin2x ∫u3(1−sin2)du ∫u3(1−u2)du ∫(u3−u5)du ∫sin3xcos3xdx=14u4−15u5+C ∫sin3xcos3xdx=14sin4x−15sin5x+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1697 views around the world You can reuse this answer Creative Commons License