How do you find the integral of cos^3 2x dxcos32xdx?

2 Answers
Oct 19, 2017

int cos^3 2xdx=1/24(sin6x+9sin2x)+C.cos32xdx=124(sin6x+9sin2x)+C.

Explanation:

Recall that, cos3theta=4cos^3theta-3costheta.cos3θ=4cos3θ3cosθ.

:. cos3theta+3costheta=4cos^3theta, or,

cos^3 theta=1/4(cos3theta+3costheta).

Replacing theta by 2x, we have,

cos^3 2x=1/4(cos 6x+3cos 2x).

:. int cos^3 2xdx=int{1/4(cos 6x+3cos 2x)}dx,

=1/4intcos 6x dx+3/4intcos2xdx,

=1/4*sin(6x)/6+3/4*sin(2x)/2,

=1/24*sin6x+3/8*sin2x,

rArr int cos^3 2xdx=1/24(sin6x+9sin2x)+C.

Oct 19, 2017

see below

Explanation:

Another approach

intcos^3 2xdx

=intcos2xcos^2 2xdx

=intcos2x(1-sin^2 2x)dx

=int(cos2x-sin^2 2xcos2x)dx

integrating by inspection

= 1/2sin2x-1/6sin^3 2x+C

which can be shown by trig identities to be equivalent to the previous solution. This is left for the reader to verify