What's the integral of int (cscx)^2 dx(cscx)2dx?

1 Answer
Nov 2, 2015

int (cscx)^2 dx = -cotx+C(cscx)2dx=cotx+C

Explanation:

The derivative of cotxcotx is csc^2xcsc2x,

so the integral of csc^2xcsc2x is cotx + Ccotx+C

If you really want the integral of the integral, then use:

int[int (cscx)^2 dx] dx = int [-cotx+C] dx[(cscx)2dx]dx=[cotx+C]dx where CC is an arbitrary constant

= int (-cosx/sinx + C) dx=(cosxsinx+C)dx where CC is an arbitrary constant

= -lnabssinx + Cx +D=ln|sinx|+Cx+D where C,DC,D are arbitrary constants

= lnabscscx + Cx +D=ln|cscx|+Cx+D where C,DC,D are arbitrary constants